
1 

In	this	lecture,	you	will	learn	about	what	is	inside	the	ESP32	chip	and	how	to	set	up	
your	laptop	and	the	ESP32	module	so	that	you	can	program	the	ESP32	in	
MicroPython.	



The	microprocessor	chip	on	the	ESP32	module	is	an	Espressif	ESP32	microcontroller	
chip	designed	for	Internet	of	Things	(IoT)	applications.		This	chip	is	called	a	
microcontroller	because	it	has	the	processor	itself	(CPU	core),	on-chip	memory,	and	
many	other	built-in	components	that	allows	user	to	almost	build	an	entire	computer	
system	on	one	chip	(called	System-on-Chip	or	SoC).	

	
The	entire	chip	can	be	divided	into	a	number	of	sub-modules.	They	are:	
•  Core	and	Memory	(brain	of	the	chip)	
•  Cryptographic	Hardware	Engines	(for	encryption	&	decryption)	
•  Wireless	communications	(wifi	and	bluetooth)	
•  Power	management	subsystem	(for	low	power	IoT	applications)	
•  Peripheral	interfaces	(for	connection	with	other	devices)	

•  Extra	flash	memory	(SPI	RAM)	
	
The	datasheet	of	the	ESP32	can	be	found	here:	
https://www.espressif.com/sites/default/files/documentation/
esp32_datasheet_en.pdf	
	

2 



The	CPU	core	and	memory	contains	a	32-bit	Xtensa	LX6	microprocessor,	which	is	a	
silicon	IP	(intellectual	property)	core	designed	and	owned	by	Tensilica,	a	company	in	
California.			
	
This	block	inside	the	ESP32	also	contains:	
•  448kB	of	lash	memory	(ROM)	that	is	non-volatile	(i.e.	its	content	is	stored	even	if	

power	is	removed)		
•  520kB	of	SRAM	(static	RAM)	which	is	used	to	store	all	variables,	heap	and	stack	
	
The	microprocessor	is	quite	power,	capable	of	executing	240	million	instructions	
(single-core)	and	running	at	240MHz	clock.			
	

3 



One	requirement	of	an	IoT	device	is	ultra	low-power.		The	ESP32	contains	an	entire	
low-power	management	subsystem	that	handles	applications	where	speed	is	NOT	
the	most	important	feature.	Instead	it	allows	the	device	to	go	to	sleep	and	wakeup	
only	when	necessary	to	do	some	basic	tasks	such	as	take	a	reading	or	two,	and	send	
them	wirelessly	via	WiFi	or	Bluetooth	to	a	base-station.		Furthermore,	this	module	
also	contains	a	Real-time	Clock	(RTC)	that	allows	scheduling	of	events,	and	wake	up	
the	Ultra	Low-power	co-processor	(ULP)	to	do	its	thing!	
	
Whenever	the	processor	goes	to	sleep,	it	stores	away	what	its	doing	(called	its	
“state”	or	“context”)	in	a	block	of	recovery	memory,	so	that	when	it	wakes	up,	the	
ULP	can	be	restored	to	its	original	state.	

	
We	will	not	be	using	this	subsystem	in	Electronics	1.	

4 



Since	the	ESP32	is	designed	for	IoT	applications,	one	requirement	for	such	
applications	is	privacy	and	security.		Therefore	information	sent	or	received	are	
often	encrypted.		Doing	encryption	and	decryption	using	the	microprocessor	is	not	
only	wasteful	(because	it	won’t	be	able	to	other	useful	things	while	performing	
encryption/decryption),	it	is	also	slow	when	performing	such	tasks	using	software.		
Worse,	it	is	power	hungry.	
	
Therefore	the	ESP32	integrates	three	different	encryption/decryption	engines	on-
chip,	which	implement	the	most	common	encryption/decryption	algorithms.	These	
are:	Rivest-Shamir-Adleman	(RSA),	Secure	Hash	Algorithm	(SHA)	and	Advanced	
Encryption	Standard	(AES).	Don’t	worry	exact	what	these	are	–	you	will	however	
come	across	them	in	many	applications	later	during	your	degree	program.	
	
Finally,	this	subsystem	also	contains	a	hardware	random	number	generator	engine	
for	any	applications	that	requires	high	quality	random	numbers.	

5 



Being	an	IoT	specific	device,	the	ESP32	is	one	of	the	chip	on	the	market	to	have	
integrated	with	the	microprocessor	both	WiFi	and	Bluetooth	communications.		Both	
these	communication	standards	require	both	digital	and	analogue	hardware	(the	
radio).		Again,	we	do	not	want	you	to	worry	about	these	at	this	stage.	Nevertheless	
you	will	find	that	this	sub-system	is	most	useful	for	many	stand-alone	products	that	
you	may	design	in	the	future.	
	
We	will	not	be	using	this	subsystem	in	Electronics	1.	

6 



The	final	subsystem	to	consider	is	large.	It	contains	many	separate	IP	blocks	that	
allows	the	ESP32	to	interface	to	the	outside	world	directly.		Included	here	are:	
•  I2C	interface	–	this	is	what	we	use	to	drive	the	OLED	display	on	the	Heltec	

module	
•  SPI	interface	–	this	is	a	fast	interface	and	it	is	used	to	link	with	the	4MB	SPI	RAM	

(extract	storage	for	our	programs)	

•  I2S	interface	–	This	is	a	dedicated	interface	for	audio	signals	
•  UART	–	You	learned	about	this	back	in	Lab	1	and	in	Digital	Basics	lecture	
•  SDIO,	CAN	–	both	are	other	digital	interfaces	for	various	applications	
•  IR	–	infra-red	interface	as	used	by	remote	control	(e.g.	on	your	TV)	
•  PWM	–	this	generates	PWM	signals	for	driving	motors	and	LED	lights	
•  Sensor	interfaces	–	Temperature	and	touch	sensor	interfaces	

•  EH	–	Ethernet	interface	
•  DAC	–	8-bit	digital	converter	(used	for	SIG_GEN	for	analogue	outputs)	
•  ADC	–	Analogue	to	Digital	converter	

Those	shown	in	BLUE	above	are	features	that	you	have	use	or	will	be	using	in	
Electronics	1.	

	

7 



The	ESP32	module	you	use	is	designed	and	manufactured	by	Heltec.	In	addition	to	
the	ESP32	chip,	the	module	also	include	a	128	x	64		0.96”	OLED.		It	is	connected	to	
the	ESP32	using	the	I2C	interface.	(We	will	discuss	this	interface	during	the	lecture	
on	“Link”	later.)	
	
Here	is	a	pinout	diagram	for	the	Heltec	module.	You	can	find	a	high	quality	PDF	file	
of	this	pinout	diagram	on:	
	
https://resource.heltec.cn/download/WiFi_Kit_32/
WIFI_Kit_32_pinoutDiagram_V2.pdf	
	
Note	that:	

•  Almost	all	pins	are	multipurpose.		User	can	program	the	pins	for	different	use.	
For	example	pin	26	can	be	used	for:	digital	input,	digital	output,	analogue	input	
and	analogue	output.	

•  The	colour	code	shows	a	type	of	usage	for	a	pin.	For	example,	GREEN	is	for	digital	
input	(i.e.	to	A-D	converter),	PINK	is	for	General	Purpose	IO	(GPIO),	which	is	
digital	input	or	output,	BROWN	is	for	analogue	output	(i.e.	via	a	D-A	converter).	

•  Three	of	the	pins	are	already	connected	to	OLED	display	on	the	module	using	the	
I2C	interface.	

•  There	are	also	dedicated	power	pins.		

8 



The	ESP32	will	be	programmed	using	MicroPython.	The	slide	provides	an	overview	
of	the	programming	environment	that	you	will	be	using.	
1.  You	must	first	load	the	MicroPython	code	onto	the	ESP	internal	flash	ROM	

(shown	in	black	on	the	right).	
2.  Later	you	will	load	into	the	internal	flash	memory	your	own	program	code	

(shown	in	blue).	

3.  To	control	the	ESP32	with	uPy,	you	can	type	directly	into	the	REPL	>>>	a	python	
code	(such	as:	println(“Hello	world!”),	one	line	at	a	time.	

4.  Alternatively	you	can	create	a	uPy	script	and	load	this	into	ESP32	flash	RAM.	
5.  To	create	the	uPy	script,	you	will	use	the	PyCharm	IDE	on	the	laptop.	This	

environment	also	provide	an	editor,	ability	navigate	the	project	directory,	
communicate	with	uPy	REPL	directly	via	a	terminal	window,	and	even	flash	your	
program	code	onto	the	ESP32.	All	these	can	be	done	within	the	PyCharm	IDE.	

	
When	you	first	power	up	the	ESP32,	uPy	will	execute	the	boot.py	file.		The	boot.py	
file	will	run	the	main.py	file.		The	main.py	will	have	one	single	uPy	line:		

	execfile(‘user_program.py’)	

Your	program	will	be	stored	in	the	user	program	file:	‘user_program.py’).		(Change	
the	name	of	the	file	to	suit.)	
Also	stored	in	the	on-chip	flash	RAM	(ROM)	are	other	modules	that	your	program	
may	use.		For	example,	you	will	be	using	oled.py,	which	is	the	driver	for	the	OLED	
display.	

9 



Before	you	can	use	the	ESP32	for	Lab	4,	you	need	to	first	set	up	your	environment	
for	MicroPython.		This	involves	quite	a	number	of	steps.			
	
As	a	result,	I	have	divided	Lab	4	into	Part	A	and	Part	B.		Part	A	does	not	teaching	you	
much	except	that	you	will	gain	some	experience	in	setting	up	a	software	
environment	that	is	fairly	complex,	and	learn	about	how	to	flash	programs	onto	the	
ESP32.			
	
The	IDE	you	will	be	using	is	called	PyCharm.		This	is	similar	to	VSC,	but	it	is	designed	
purposefully	for	Python	programming.		The	reason	I	chose	PyCharm	is	that	it	has	
integrated	into	this	through	a	MicroPython	plug-in	the	necessary	tools	to	run	
programs	on	the	ESP32	and	to	flash	new	program	scripts	to	its	memory	from	within	
the	IDE.	

10 



MicroPython	is	quite	a	large	system	and	there	are	too	much	to	learn.		It	is	also	good	
if	you	learn	to	read	instructions	from	websites,	rather	than	just	been	spoon	fed	by	
me.		So,	go	to:	
	
		https://docs.micropython.org/en/latest/	
	

You	will	see	this	page.		There	are	lots	of	useful	documents	here.		Explore!			
	

11 



MicroPython	provides	many	library	functions	in	order	to	make	programming	this	
board	much	easier.		There	are	basically	two	main	categories	of	library	functions:	
1.  A	subset	of	the	standard	Python	library	you	can	find	everywhere	(but	

implemented	for	MicroPython).		Of	these,	the	two	that	you	would	need	are:	
math	and	sys.	

2.  There	is	a	bunch	of	library	functions	that	are	written	for	the	ESP32	specifically.		
The	three	that	you	need	are:	machine,	esp	and	esp32.		The	machine	library	
provides	top	level	control	of	the	board,	and	esp	&	esp32	provide	detail	control.		
machine	is	the	most	important	library	for	you	to	know.		Almost	all	functions	we	
use	so	far	are	imported	from	the	machine	library.	

3.  There	is	another	important	module:	time.		This	provides	delay	in	millisecond	or	
microseconds	(e.g.	time.sleep_ms()	).	

4.  Then	there	is	a	large	collection	of	peripheral	specific	libraries	(they	are	written	
as	object-oriented	class	libraries).	You	will	be	using	many	functions	from	these.	

12 



13 

The	machine	class	libraries	includes	those	shown	here.		In	Lab	4,	you	used	
the	following	library	classes:	PWM,	ADC,	Pin	(everything),	Timer	(these	are	
functions	to	control	internal	timer	circuits),	I2C	and	UART.		I	have	provided	
examples	in	Lab	4B	for	you.		
You	don’t	need	to	know	all	these	libraries.		You	should	learn	using	this	
approach:	
1.  Learn	from	the	example	code	provided.	

2.  If	these	do	not	do	what	you	need,	be	clear	what	function	you	need	to	
perform.	

3.  Look	for	a	function	in	the	library	that	is	likely	to	give	you	what	you	
needed.	

4.  Failing	that,	ask	me	or	your	friends	and	classmates,	or	your	team	project	
supervisor.	

	


