Imperial College

Topic 15

Using MicroPython on ESP32

Professor Peter YK Cheung
Dyson School of Design Engineering

URL: www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/
E-mail: p.cheung@imperial.ac.uk

PYKC 9 June 2020 DE 1.3 - Electronics 1 Topic 15 Slide 1

In this lecture, you will learn about what is inside the ESP32 chip and how to set up
your laptop and the ESP32 module so that you can program the ESP32 in
MicroPython.

ESP32 loT Microcontroller (1)

L

Bluctooth IR0
uetoo! n|
baseband controller

JE

| /Cryptognphlc hardware acceleration

Core and memory

| Cryptographic Hardware §

Xtq 13

CPU core & memory

(e (2)

SRAM
andom-access mem

[ROM J
=

P Embedded flash memory [

Peripheral (
interfaces [

Controller Area Networ

PWM
sise-width modulat

RTC and low-power management subsystem
(Real-time clock & Low Power processor unit
PMU Recovery
Power management unit J co-processor memory
- <

L
J [3)
‘\

Temperature sensor ‘ Touch sensors

~
SAR ADC

(. |
Digital-to-analog converte S
L (

—~/)

PYKC 9 June 2020

DE 1.3 - Electronics 1

Topic 15 Slide 2

The microprocessor chip on the ESP32 module is an Espressif ESP32 microcontroller
chip designed for Internet of Things (IoT) applications. This chip is called a
microcontroller because it has the processor itself (CPU core), on-chip memory, and
many other built-in components that allows user to almost build an entire computer
system on one chip (called System-on-Chip or SoC).

The entire chip can be divided into a number of sub-modules. They are:

* Core and Memory (brain of the chip)

* Cryptographic Hardware Engines (for encryption & decryption)

* Wireless communications (wifi and bluetooth)

* Power management subsystem (for low power loT applications)

* Peripheral interfaces (for connection with other devices)

e Extra flash memory (SPI RAM)

The datasheet of the ESP32 can be found here:

ESP32 CPU Core & Memory

Core and memory

Xtensa LX6 microprocessor
32-bit; dual-core or single-core

™
J

ROM SRAM

Read-only memory Static random-access mem.
\ J
. /

PYKC 9 June 2020 DE 1.3 - Electronics 1 Topic 15 Slide 3

The CPU core and memory contains a 32-bit Xtensa LX6 microprocessor, which is a
silicon IP (intellectual property) core designed and owned by Tensilica, a company in
California.

This block inside the ESP32 also contains:

* 448kB of lash memory (ROM) that is non-volatile (i.e. its content is stored even if
power is removed)

* 520kB of SRAM (static RAM) which is used to store all variables, heap and stack

The microprocessor is quite power, capable of executing 240 million instructions
(single-core) and running at 240MHz clock.

ESP32 RTC and Power Management Sub-system

RTC and low-power management subsystem

PMU Ultra-low-power Recovery
Power management unit co-processor memory
PYKC 9 June 2020 DE 1.3 - Electronics 1 Topic 15 Slide 4

One requirement of an loT device is ultra low-power. The ESP32 contains an entire
low-power management subsystem that handles applications where speed is NOT
the most important feature. Instead it allows the device to go to sleep and wakeup
only when necessary to do some basic tasks such as take a reading or two, and send
them wirelessly via WiFi or Bluetooth to a base-station. Furthermore, this module
also contains a Real-time Clock (RTC) that allows scheduling of events, and wake up
the Ultra Low-power co-processor (ULP) to do its thing!

Whenever the processor goes to sleep, it stores away what its doing (called its
“state” or “context”) in a block of recovery memory, so that when it wakes up, the
ULP can be restored to its original state.

We will not be using this subsystem in Electronics 1.

ESP32 Crypto Hardware

(A
/Cryptographic hardware acceleration
Y € N\ ™
N\ N
N/ RSA SHA
Rivest-Shamir-Adleman FIPS PUB 180-4
. .
4 N\)
RNG AES
Random number gen. FIPS PUB 197
- 7 o W,
\\ J
PYKC 9 June 2020 DE 1.3 - Electronics 1 Topic 15 Slide 5

Since the ESP32 is designed for loT applications, one requirement for such
applications is privacy and security. Therefore information sent or received are
often encrypted. Doing encryption and decryption using the microprocessor is not
only wasteful (because it won’t be able to other useful things while performing
encryption/decryption), it is also slow when performing such tasks using software.
Worse, it is power hungry.

Therefore the ESP32 integrates three different encryption/decryption engines on-
chip, which implement the most common encryption/decryption algorithms. These
are: Rivest-Shamir-Adleman (RSA), Secure Hash Algorithm (SHA) and Advanced
Encryption Standard (AES). Don’t worry exact what these are — you will however
come across them in many applications later during your degree program.

Finally, this subsystem also contains a hardware random number generator engine
for any applications that requires high quality random numbers.

ESP32 wireless links

Radio

(

RF receive

Clock generator

(

RF transmit

Bluetooth aluri::oth
baseband controller
(.
Wi-Fi Wi-Fi
baseband MAC

PYKC 9 June 2020

DE 1.3 - Electronics 1

Topic 15 Slide 6

Being an loT specific device, the ESP32 is one of the chip on the market to have
integrated with the microprocessor both WiFi and Bluetooth communications. Both
these communication standards require both digital and analogue hardware (the
radio). Again, we do not want you to worry about these at this stage. Nevertheless
you will find that this sub-system is most useful for many stand-alone products that

you may design in the future.

We will not be using this subsystem in Electronics 1.

ESP32 Peripheral Interfaces & SPI RAM

Embedded flash memory

Included in ESP32-PICO-D4 system-in-package QFN module

s 1 N\
Peripheral SPI
interfaces Serial Peripheral Interface

1?C
Inter-Integrated Circuit

SDIO
Secure Digital Input Output

UART
Universal async. receiver-transmitter

[)
[)
[)
[o)
[)
[)
[)

CAN

)
)
o]
)
)
)

IR
Infrared

Pulse-width modulation

Touch sensors
Ten capacitive-sensing inputs

Temperature sensor
Internal; range of -40°C to 125°C

DAC SAR ADC

Digital-to-analog converter Successive approx. analog-to-digital conv.
. J

AN NN

PYKC 9 June 2020 DE 1.3 - Electronics 1 Topic 15 Slide 7

The final subsystem to consider is large. It contains many separate IP blocks that
allows the ESP32 to interface to the outside world directly. Included here are:

* |2Cinterface — this is what we use to drive the OLED display on the Heltec
module

* SPlinterface — this is a fast interface and it is used to link with the 4MB SPI RAM
(extract storage for our programs)

* |12Sinterface — This is a dedicated interface for audio signals

* UART - You learned about this back in Lab 1 and in Digital Basics lecture
* SDIO, CAN — both are other digital interfaces for various applications

* IR —infra-red interface as used by remote control (e.g. on your TV)

* PWM - this generates PWM signals for driving motors and LED lights

* Sensor interfaces — Temperature and touch sensor interfaces

* EH — Ethernet interface

* DAC - 8-bit digital converter (used for SIG_GEN for analogue outputs)

* ADC - Analogue to Digital converter

Those shown in BLUE above are features that you have use or will be using in
Electronics 1.

Heltec ESP32 module

El-—- ¢

El— s

[vexe gl J°)

Sl &

Teucha — Az 4 - opr013 IFEI—eo &
Toucks — aoczs - cero1z —JETI-—e @

Toucs - Abcz_6 - cpro1s —ELI—O @

Touc7 - Abc2_7 - Gero27 —E—® @

Al - a2 9 - o102 —JER/ @

o -{bAG2 - moc2s - ceros —ECHE @
Touch8 — ADC1S — GPIO33* — XxTAL32 —JNELI—@
Touch9 - ADC1 4 — GPI032* — xTAL32 —ECI—@
avc1_7 - cerozst —(ECI—e

avc1 6 — cerossr —[EIN—e

apc1_3* — 6p1039* — sensvn —[ETN—e

avc1 2+ - cproze* — capwv —(EI—eo @

avc1_1* - 6p1o37* - capve —EAD—eo @

AbC1_0* — GP1036* — sensevp —EI—o @ \z u : é)
-

\

&J
’éEl

é

Eﬁo—m

ééééééééééé

GPIOS

GPIO1
GPI03
ADC2_3
GPI02
GPI00
ADC2_0
U2_RXD

U2_TXD

V_SPI_CSO

GPI018
GPI023
GPIO19
GPI022
GPIO21

- vo_mo
Uo_RXD

— HSPI_CSO — Touch3 .

~ ADC2.2 - HSPIWP — Touch2

- ADC2.1 - Touchl - Button

~ HSPI_MD — Touche -

&

— V_SPI_CLK
— V_SPID
- V.SPIQ — WOCTS
— V_SPIWP — UO_RTS

A JUTRy vext control

PYKC 9 June 2020

DE 1.3 - Electronics 1

Topic 15 Slide 8

The ESP32 module you use is designed and manufactured by Heltec. In addition to
the ESP32 chip, the module also include a 128 x 64 0.96” OLED. It is connected to
the ESP32 using the 12C interface. (We will discuss this interface during the lecture

on “Link” later.)

Here is a pinout diagram for the Heltec module. You can find a high quality PDF file

of this pinout diagram on:

Note that:

* Almost all pins are multipurpose. User can program the pins for different use.
For example pin 26 can be used for: digital input, digital output, analogue input

and analogue output.

* The colour code shows a type of usage for a pin. For example, GREEN is for digital
input (i.e. to A-D converter), PINK is for General Purpose 10 (GPIO), which is
digital input or output, BROWN is for analogue output (i.e. via a D-A converter).

* Three of the pins are already connected to OLED display on the module using the

12C interface.

* There are also dedicated power pins.

ESP32 with MicroPython (uPy)

E Flash ESP32

via esptool
PyCharm IDE .

Labd - example_esp.py

MicroPython firmware
in flash ROM
Directory =
On-chip ROM for
programs

boot.py

main.py

hello.py rotary.py

uPy terminal

PYKC 9 June 2020 DE 1.3 - Electronics 1 Topic 15 Slide 9

The ESP32 will be programmed using MicroPython. The slide provides an overview
of the programming environment that you will be using.

1. You must first load the MicroPython code onto the ESP internal flash ROM
(shown in black on the right).

2. Later you will load into the internal flash memory your own program code
(shown in blue).

3. To control the ESP32 with uPy, you can type directly into the REPL >>> a python
code (such as: printIn(“Hello world!”), one line at a time.

4. Alternatively you can create a uPy script and load this into ESP32 flash RAM.

To create the uPy script, you will use the PyCharm IDE on the laptop. This
environment also provide an editor, ability navigate the project directory,
communicate with uPy REPL directly via a terminal window, and even flash your
program code onto the ESP32. All these can be done within the PyCharm IDE.

When you first power up the ESP32, uPy will execute the boot.py file. The boot.py
file will run the main.py file. The main.py will have one single uPy line:

execfile(‘user_program.py’)

Your program will be stored in the user program file: ‘user_program.py’). (Change
the name of the file to suit.)

Also stored in the on-chip flash RAM (ROM) are other modules that your program
may use. For example, you will be using oled.py, which is the driver for the OLED
display.

Lab 4A - Setting up the MicroPython environment

Task 1 Task 2 Task 3 Task 4
Install - Erase and Install
CP2102 '”Stta" | —) flash UPy to — PyCharm
drive driver esptoo ESP32 IPDE \lmth_

uPy plug-in

Tasks 7
Tasks 5 & 6 Task 8
s | ExplorecPy | {mEmSSSE| | Flashing — .
via REPL “Hello world!” Display on
onto ESP32 OLED
PYKC 9 June 2020 DE 1.3 - Electronics 1 Topic 15 Slide 10

Before you can use the ESP32 for Lab 4, you need to first set up your environment
for MicroPython. This involves quite a number of steps.

As a result, | have divided Lab 4 into Part A and Part B. Part A does not teaching you
much except that you will gain some experience in setting up a software
environment that is fairly complex, and learn about how to flash programs onto the

ESP32.

The IDE you will be using is called PyCharm. This is similar to VSC, but it is designed
purposefully for Python programming. The reason | chose PyCharm is that it has
integrated into this through a MicroPython plug-in the necessary tools to run
programs on the ESP32 and to flash new program scripts to its memory from within
the IDE.

10

MicroPython Documentation

MicroPython

1.12

MicroPython libraries

MicroPython language and
implementation

MicroPython differences from CPython
Developing and building MicroPython
MicroPython license information
Quick reference for the pyboard

Quick reference for the ESP8266
Quick reference for the ESP32

Quick reference for the WiPy

Quick reference for the UNIX and
Windows ports

Docs »

MicroPython documentation

Welcome! This is the documentation for MicroPython v1.12, last updated 05 Jun 2020.

MicroPython runs on a variety of systems and hardware platforms. Here you can read the general
documentation which applies to all systems, as well as specific information about the various

platforms - also known as ports - that MicroPython runs on.

General documentation for MicroPython:

Library Reference
MicroPython libraries and modules

MicroPython Differences
MicroPython operations which differ from
CPython

References and tutorials for specific platforms:

Quick reference for the ESP32

Language Reference
information about MicroPython specific
language features

License
MicroPython license information

pinout for ESP32-based boards, snippets of useful code, and a tutorial

PYKC 9 June 2020

DE 1.3 - Electronics 1

Topic 15 Slide 11

MicroPython is quite a large system and there are too much to learn. It is also good
if you learn to read instructions from websites, rather than just been spoon fed by

me. So, go to:

https://docs.micropython.org/en/latest/

You will see this page. There are lots of useful documents here. Explore!

11

MicroPython Library Functions

Python math — mathematical functions (e.g. sin, pi)
standard lib —C

sys — system specific functions (e.g. sys.argv)

MicroPython machine — functions related to
Libraries processor itself

esp — functions related to the board

MicroPython time — functions related to hardware timer
and ESP32 Various class libraries to drive
specific lib peripherals
PYKC 9 June 2020 DE 1.3 - Electronics 1 Topic 15 Slide 12

MicroPython provides many library functions in order to make programming this
board much easier. There are basically two main categories of library functions:

1.

A subset of the standard Python library you can find everywhere (but
implemented for MicroPython). Of these, the two that you would need are:
math and sys.

There is a bunch of library functions that are written for the ESP32 specifically.
The three that you need are: machine, esp and esp32. The machine library
provides top level control of the board, and esp & esp32 provide detail control.
machine is the most important library for you to know. Almost all functions we
use so far are imported from the machine library.

There is another important module: time. This provides delay in millisecond or
microseconds (e.g. time.sleep_ms()).

Then there is a large collection of peripheral specific libraries (they are written
as object-oriented class libraries). You will be using many functions from these.

12

pyb - Class Library

class PWM - PWM signal generation

class ADC — analog to digital conversion

class DAC - digital to analog converson (2 channels)

class LED — LED objects to control on board LEDs

machine Classes

class Pin — control 1/O pins

class 12C — control 12C interface

class Timer — control hardware timers

class SPI — control SPI interface

PYKC 9 June 2020 DE 1.3 - Electronics 1 Topic 15 Slide 13

The machine class libraries includes those shown here. In Lab 4, you used
the following library classes: PWM, ADC, Pin (everything), Timer (these are
functions to control internal timer circuits), 12C and UART. | have provided
examples in Lab 4B for you.

You don’t need to know all these libraries. You should learn using this
approach:

1. Learn from the example code provided.

2. If these do not do what you need, be clear what function you need to
perform.

3. Look for a function in the library that is likely to give you what you
needed.

4. Failing that, ask me or your friends and classmates, or your team project
supervisor.

13

